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Uncertainty Awareness in Wireless Communications
and Sensing
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Abstract—Wireless communications and sensing (WCS) es-
tablish the backbone of modern information exchange and
environment perception. Typical applications range from mobile
networks and the Internet of Things to radar and sensor grids.
Despite transformative capabilities, wireless systems often face
diverse uncertainties in design and operation, such as modeling
errors due to incomplete physical knowledge, statistical errors
arising from data scarcity, measurement errors caused by sensor
imperfections, computational errors owing to resource limitation,
and unpredictability of environmental evolution. Once ignored,
these uncertainties can lead to severe outcomes, e.g., performance
degradation, system untrustworthiness, inefficient resource uti-
lization, and security vulnerabilities. As such, this article reviews
mature and emerging architectural, computational, and opera-
tional countermeasures, encompassing uncertainty-aware designs
of signals and systems (e.g., diversity, adaptivity, modularity), as
well as uncertainty-aware modeling and computational frame-
works (e.g., risk-informed optimization, robust signal processing,
and trustworthy machine learning). Trade-offs to employ these
methods, e.g., robustness vs optimality, are also highlighted.

I. INTRODUCTION

THE 20th and 21st centuries have witnessed the advent,
development, and maturation of wireless systems that

play key roles in communications and sensing. Representative
examples include cellular networks, satellite systems, Blue-
tooth meshes, wireless fidelity (Wi-Fi) systems, the Internet of
Things (IoT), autonomous swarms, radar, and sensor networks,
to name a few. These wireless systems have greatly revolu-
tionized human society by enabling the intelligent acquisition
and exchange of information, for example, high-speed data
transfer, ubiquitous connectivity, environmental understanding,
medical microwave imaging, and remote healthcare. The in-
corporation of advanced analysis and processing techniques,
such as artificial intelligence and machine learning, further
pushes the boundaries of wireless communications and sens-
ing, enabling automated and high-quality data analytics, and
supporting sensible and efficient decision-making [1].

Although significant functions and capabilities have been
shown, wireless systems often face numerous modeling, ex-
perimental, computational, operational, and environmental un-
certainties that threaten their trustworthiness, efficiency, and
security. Here, uncertainties refer to discrepancies between
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our knowledge and the underlying truths. These uncertainties
can arise from diverse sources, for instance, channel model-
ing errors, sensor measurement errors, algorithmic truncation
errors, network interferences and attacks, and environmental
evolutions and fluctuations, respectively. In the design and
operation of wireless systems, if uncertainties are ignored,
the consequences can be severe in the sense of conspicuous
performance degradation, system untrustworthiness, inefficient
resource utilization, and security vulnerabilities. To be spe-
cific, for example, wireless signals inevitably undergo non-
stationary random channel fading (e.g., time-varying Rayleigh
or Rician), hardware imperfections (e.g., nonlinearities in
power amplifiers, in-phase–quadrature imbalances, and phase
noises), and interferences from other devices (e.g., co-channel,
jamming, and network attacks), which can cause unpredictable
variations in signal quality and uncontrollable errors in signal
detection, estimation, and analysis, if these uncertainties are
not sufficiently handled. For another example, when external
environments evolve or fluctuate, the performance of employed
signal processing and machine learning methods for commu-
nications and sensing may seriously degrade, if the adaptation
or robustification of these methods is not addressed. Therefore,
uncertainty awareness comprises a critical aspect of intelligent
transmission and processing; see [2, Fig. 10].

To enhance and ensure the trustworthiness, efficiency, and
security of wireless systems, great efforts have been made
in the design and operation processes by both academia and
industry. Aiming to illuminate the path to uncertainty-aware
(UA) transmission and processing, this article reviews mature
and emerging architectural, computational, and operational
mitigation strategies in response to different types of uncertain-
ties in wireless communications and sensing. We categorize
the existing and developing UA treatments into two primary
streams. The first stream works on reforms of UA wireless
signals and systems, considering the following key factors:

• Redundancy, Diversity, and Margin;
• Feedback and Adaptivity;
• Anomaly Detection and Handling;
• Modularization;
• Decentralization;
• and Prediction and Prescription.

These solutions emphasize modifying signal characteristics
(e.g., structures, parameters), system architectures, and opera-
tional strategies to enhance uncertainty awareness. The second
stream focuses on enriching UA modeling and computational
frameworks, emphasizing the following aspects:

• Uncertainty Quantification;
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• UA Optimization;
• Adaptive and Robust Signal Processing;
• and Trustworthy Machine Learning.

These solutions are particularly useful when a wireless com-
munication or sensing problem can be formulated as an
optimization, signal processing, or machine learning model.

However, advanced system characteristics, such as adaptiv-
ity and robustness, always come with additional prices, e.g.,
higher design expenses, resource idling for overengineering,
loss of performance optimality under ideal conditions, and
extra computational burdens. Hence, in practice, balances
among conflicting system features must be carefully planned.
To this end, we also summarize potential trade-offs in UA
wireless systems engineering.

This article is organized as follows. Section II identifies
diverse sources of uncertainties in wireless communications
and sensing, and highlights the necessity of uncertainty aware-
ness. Section III outlines architectural, computational, and
operational approaches to address these uncertainties. Trade-
offs in UA wireless engineering are discussed in Section IV,
while concrete examples of uncertainty awareness are given
in Section V. Conclusions in Section VI complete the article.

II. SOURCES OF UNCERTAINTIES AND NECESSITY OF
UNCERTAINTY AWARENESS

Uncertainties arise when our knowledge deviates from the
underlying truths, for example, discrepancies between model-
ing assumptions and physical mechanisms, between observa-
tions and actual values, between found local optimality and
unknown global optimality, and between limited history data
and population distribution. The more complex and dynamic
a system, model, process, or population is, the more uncer-
tainties may appear. Based on their origins, uncertainties in
wireless systems can be exemplified as follows, along with
the potential consequences if not properly handled.

Channel Uncertainties: Channel uncertainties can be caused
by modeling errors (e.g., mismatched modeling assumptions),
moving objects, environmental evolutions and fluctuations, and
estimation errors due to data scarcity and limited computing
resources. Ignoring channel uncertainties may lead to severe
repercussions, such as dead zones in mobile networks, weak
connectivity, reduced or unstable signal-to-noise ratio (SNR),
inter-symbol interference, frequency offsets (i.e., Doppler),
and inefficient resource utilization (e.g., high spectrum and
power consumption with limited performance gains).

Noises, Interferences, and Attacks: In wireless systems de-
sign and operation, thermal noises, quantization noises, phase
noises, co-channel interference, adjacent-channel interference,
inter-system (e.g., between Bluetooth and Zigbee) interfer-
ence, self-interference (e.g., in full-duplex systems), jamming,
eavesdropping, spoofing, etc., are common. If unaddressed,
these impairments can cause serious consequences, such as
connectivity loss, SNR deterioration, increased bit-error rates,
reduced target detection probability, privacy and confidentiality
leakage, systemic disruption, and dropped sensing accuracy.

Hardware Imperfections: Despite great advances in design
and manufacturing, hardware devices are unavoidably subject

to imperfections and non-idealities that can significantly im-
pact system performance. Aging and environmental variations
are typical non-anthropogenic driving forces for hardware
imperfections. Representatives include power amplifier nonlin-
earities, in-phase-–quadrature (I/Q) imbalances, phase noises,
array calibration errors, limited resolutions of converters, clock
drifts, etc. Severe issues resulting from hardware imperfections
encompass constellation shift and distortion, SNR reduction,
system disruption, sensing inaccuracy, etc.

Deployment and Configuration Uncertainties: Uncertainties
in deployment arise when real-world devices and components
do not exactly reach the positions for which they are planned;
e.g., placement errors of base stations and access points,
deployment errors of sensor nodes, array calibration errors,
and swarm formation errors (e.g., in highly-maneuvering un-
manned aerial vehicle networks). Uncertainties in configu-
ration arise when operating values of parameters or inputs
do not exactly match their optimal values, for example,
suboptimal or improper resource allocation of spectra and
power. Deployment and configuration uncertainties can lead to
significant and widespread outcomes, such as coverage gaps,
interference, signal degradation, suboptimal or poor quality
of service, inefficient resource management, and inaccurate
environmental measurements (e.g., low resolution in multi-
target direction-of-arrival estimation).

Timing Errors: Timing errors occur when synchronization
between devices (e.g., between transmitters and receivers) is
inaccurate. Such errors can arise from factors like clock drifts
in oscillators, clock skews between different devices or sys-
tems, and time-quantization errors. If not properly addressed,
timing errors can lead to severe cascading effects, for example,
inter-symbol interference, inter-carrier interference (e.g., in
orthogonal frequency-division multiplexing), synchronization
failures in time-division multiple access (TDMA) or dis-
tributed networks, and poor sensing quality in time-difference-
of-arrival (TDoA) and time-of-arrival (ToA) methods.

Variability of Network Topology: Wireless systems are inher-
ently dynamic, with frequently changing network topologies
due to, e.g., node mobility, node availability (i.e., joining and
quitting), and networking protocols. The variability of network
topology poses significant challenges in maintaining stable,
efficient, and reliable communication connections, further
leading to deficient service quality, such as message latency
and dropout. Moreover, the variability can greatly impact the
accuracy of networked sensing systems because, for example,
the nominal topology assumed in signal processing algorithms
may deviate from the underlying actual one.

Variability of Available Resources: Resource allocation for
wireless communications and sensing focuses on optimizing
the utilization of critical resources in time, space, spectrum,
power, and computing. However, in real-world operations,
accessible resources may be inexactly known. For example,
devices relying on solar, wind, or radio energy harvesting can
face power variability due to environmental factors such as
weather or disasters. For another example, in spectra-sharing
systems, such as cognitive radio and integrated sensing and
communications (ISAC), the accessibility of spectral resources
is highly variable due to, e.g., spectrum sensing inaccuracies,
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primary user activities, interference from coexisting functions,
and environmental conditions. For the third example, insuffi-
cient computing power and memory can lead to delays and
denial-of-service in executing signal processing and machine
learning tasks. The variability of available resources may cause
significant performance degradation in wireless systems, in-
cluding decreased data throughput, increased latency, unstable
connection, lower reliability (e.g., frequent system disruption),
deteriorated detection and estimation accuracy, etc.

Environmental Uncertainties: Environmental uncertainties
mean that the operating environment of a system is not
completely known to model designers, algorithm developers,
and decision makers, due to the inherent variability, uncontrol-
lability, and unpredictability of environments. Environmental
uncertainties act as causing factors of many other uncertain-
ties, such as channel uncertainties, noises and interferences,
variability of network topology, and variability of available
resources. Rain, snow, humidity and temperature fluctuations,
natural disasters, solar activities, space radiations, industrial
electromagnetic interference (e.g., when machines start), vehi-
cle moving, and human activities (e.g., gatherings, scatterings)
are typical reasons for environmental uncertainties.

Algorithmic and Computational Errors: Algorithmic and
computational errors can originate from model surrogate
errors (e.g., sample-average approximation of mathematical
expectation), local optimality in optimization (e.g., alternating
direction method of multipliers), empirical (thus suboptimal)
specifications of initial and termination conditions of iterative
algorithms, numerical errors (e.g., in rounding, truncation, ma-
trix inversion, quantization, discretization), and computational
resource constraints (e.g., incomplete or delayed computa-
tions). These errors can lead to critical issues, such as un-
reliable predictions and decisions, inaccurate communication
and sensing, system instabilities, safety risks, and insufficient
management of power and spectral resources, to name a few;
specific examples include localization and positioning errors,
sub-optimality in resource allocation, etc. In the era of intelli-
gent transmission and processing, as wireless systems evolve
to incorporate advanced technologies like machine learning
and edge computing, the risks associated with algorithmic and
computational errors become progressively critical.

Data Scarcity: The availability of sufficient and high-quality
data is essential for optimal performance in tasks such as
system modeling, parameter (e.g., channel) estimation, and
decision-making (e.g., pattern recognition). The scarcity of
data can result from inherent system limitations (e.g., sparse
sensor deployments and limited sampling rates), environmental
constraints (e.g., harsh or dynamic environments), privacy and
security concerns (e.g., data restriction), data aging, or high
cost of data acquisition. If data scarcity is not addressed, it
can lead to a range of severe consequences that undermine the
effectiveness of wireless systems, including inaccurate channel
estimation, unreliable signal detection and estimation (e.g., in
target positioning and tracking), insufficient model calibration,
limited generalization ability of decisions (e.g., in data-driven
machine learning), and inadequate identification and counter
ability against cyberattacks.

In summary, neglecting uncertainties in wireless systems

can cause significant losses of trustworthiness in terms of four
critical aspects:

1) Reliability: The ability to meet performance targets de-
spite given uncertainties. For example, high reliability can
mean that the likelihood of failure is below a specified
threshold. In wireless communications, minimizing the
outage probability is a typical example of achieving
system reliability [3].

2) Resilience: The ability to return to normal states or re-
cover expected functionality after disruptions. In wireless
communications, an excellent example is as follows: a
base station can hand over connections to neighboring
stations when it fails or is overloaded.

3) Adaptivity: The ability to maintain performance by adjust-
ing decisions, behaviors, configurations, or functionalities
in response to changes in environments or conditions. In
wireless communications, adaptive precoding and com-
bining using real-time channel state information is a
representative example [4], [5].

4) Robustness: The ability to sustain performance by tol-
erating uncertainties; that is, the performance or output
is insensitive to perturbations in parameter or input.
In wireless communications and sensing, robust Capon
beamforming against pointing errors and array calibration
errors is a notable example [6], [7].

Therefore, UA wireless systems engineering seeks to ensure
the trustworthiness of wireless systems, including reliability,
resilience, adaptivity, and robustness.

The demonstrated types of uncertainties and their cor-
responding hazards commonly arise, either individually or
concurrently, in diverse wireless systems, such as IoT, wireless
sensor networks (WSNs), mobile ad hoc networks (MANETs),
and vehicular ad hoc networks (VANETs); see [8]–[10]. In
practice, different uncertainties are often independently ad-
dressed. Although the taxonomy and examples above cover a
broad range of wireless engineering, they are not necessarily
exhaustive. Researchers and practitioners should be aware of
other types of uncertainties.

III. TECHNICAL TREATMENTS AGAINST UNCERTAINTIES

This section summarizes representative strategies to combat
uncertainties in wireless systems. As per the characteristics
of these approaches, we group them into two categories: UA
designs of signals and systems, and UA modeling and com-
putational frameworks. Some of these methods are invented
from the perspective of systems structuring and design, while
others are from that of systems control and operation.

A. UA Designs of Signals and Systems

In wireless communications and sensing, signal character-
istics (e.g., structures, parameters), system architectures, and
operational strategies play a key role in uncertainty awareness.
This subsection discusses the efforts in this direction.

1) Redundancy, Diversity, and Margin: Redundancy and
diversity are two specific approaches of overengineering,
where a system or solution is designed in a more complex
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and resource-consuming way than minimally required. Re-
dundancy means adding homogeneous components or parallel
systems to maintain functionality in case one fails, while
diversity involves using heterogeneous components or methods
to mitigate the risk of common-mode failures. In cellular
networks, deploying dense homogeneous base stations and em-
ploying intelligent reflective surfaces can mitigate dead-zone
and shadowing effects. In wireless sensing, applying informa-
tion fusion on heterogeneous sensor grids can reduce target
detection, positioning, and tracking errors under various types
of interference such as jamming. Channel coding methods,
e.g., Hamming codes, are excellent examples of redundancy.
Temporal diversity such as interleaving, spatial diversity such
as multi-input multi-output (MIMO), and frequency diversity
such as orthogonal frequency-division multiplexing (OFDM)
are remarkable examples of diversity. Redundancy and di-
versity schemes can also be jointly used. For example, time
redundancy (i.e., cyclic prefixes) in OFDM further enhances
the reliability of information transmission. On the other hand,
margin entails introducing buffering regions to the design of
signals, systems, methods, etc., to suppress uncertainties. Un-
like redundancy and diversity, margin does not necessarily add
complexities, although it consumes additional time, spectral,
or power resources as well. When transmit power is fixed,
lower-order modulation schemes, e.g., quadrature phase shift
keying (QPSK), have larger I/Q margins than higher-order
quadrature amplitude modulation (QAM) to combat noises
and interference. Guard intervals in the time domain and
guard bands in the frequency domain can add margins (i.e.,
buffers) to account for channel uncertainties. As illustrated,
redundancy, diversity, and margin in signals and systems are
natural ways to ensure reliability, resilience, and robustness.

2) Feedback and Adaptivity: Adaptivity means that a sys-
tem or method can monitor its running environment or condi-
tions, learn from shifts in the environment or changes in the
conditions, and adjust its structure or operation in a real-time
manner. Feedback is a key component of the adaptivity loop
since it informs performance or environmental changes and
guides subsequent adjustments. In wireless communications,
adaptive modulation and coding leveraging channel feedback,
and cognitive radio for real-time spectral sensing and alloca-
tion, are two typical examples. In wireless sensing, adaptive
beamforming for target tracking exemplifies the power of
adaptivity and feedback; to be specific, the beamformer can
steer the main lobe toward the real-time location of the
target. Fast adaptation to evolving channel states (e.g., due
to changing environments) is also a trending consideration
in emerging machine-learning (ML) techniques for wireless
communications and signal processing [5].

3) Anomaly Detection and Handling: Anomaly detection
and handling is a mainstream approach to addressing uncer-
tainties in the operation of a system, algorithm, or process.
Specific examples include the following: a) error detection and
correction codes in channel coding; b) error monitoring (using
pilots) and reduction in signal detection, through techniques
such as channel equalization and Doppler compensation (if
large errors occur); c) intrusion detection and access control
(e.g., intruder quarantining) in wireless networks; d) abnormal

sensor detection and data imputation in sensor grids. Feedback
and adaptivity represent a special case of anomaly detection
and handling. Unlike feedback and adaptivity, anomaly detec-
tion and handling do not necessarily involve a feedback loop to
dynamically influence the sources of errors. Instead, they may
simply provide remedial solutions, such as robust methods [7],
[8], [11], to mitigate or tolerate these faults.

4) Modularization: Modularization entails breaking down a
complex system into structurally smaller, functionally indepen-
dent, and operationally more manageable self-contained mod-
ules. This approach can isolate issues and failures to specific
modules, so it becomes easier to locate and fix problems. In
addition, replacing damaged individual parts is operationally
more convenient. Moreover, modularized systems are flexi-
ble for topological reconfiguration and upgrading. Therefore,
modularization can naturally benefit the improvement of the
system’s flexibility, scalability, and resilience. Under the mod-
ularization scheme, reliability, adaptivity, and robustness can
also be enhanced in the sense that UA technical treatments for
an individual module are more manageable than those for the
whole system. In this sense, a highly integrated information
transmission and processing (ITP) system is not necessarily
preferable over its modularized counterpart; the former refers
to an ML-based black-box ITP system, while the latter means
a canonical communications system [2, Figs. 2, 5].

5) Decentralization: Decentralization means distributing
the computing power and data storage of a network over
multiple independent nodes, rather than relying on a single
central node. Decentralization can improve the network’s reli-
ability, resilience, and robustness against failures and attacks
because disruptions at a subgroup of nodes may not necessarily
obliterate the functionality of the entire network. Moreover,
decentralization can enhance the network’s scalability because
joining or exiting nodes may not significantly impact the
workload and strategy of a single member. In centralized
networks, however, the central coordinator or controller is
highly influenced by topological variability. Edge computing
and federated learning are typical examples of decentralization
in wireless communications. In wireless sensing, decentraliza-
tion can be exemplified by distributed sensor networks. To sum
up, in terms of reliability, resilience, adaptivity, and robustness,
the decentralized system architecture is beneficial compared to
its centralized counterpart.

6) Prediction and Prescription: Prediction and prescription
is a strategy to forecast future events or behaviors and take
proactive actions in advance to prevent or reduce adverse
impacts. This strategy helps to maintain smooth functionality
and reduce disruptions of a system or method, thus improving
its reliability and robustness. For example, in ISAC systems,
the incorporation of sensing functions enables base stations
to forecast the positions of users, and therefore, generate
predictive beams for smoother and robust quality of com-
munications services. For another example, machine learning
in network management can predict the traffic patterns in
cellular networks (e.g., user demand spikes and traffic density
in specific cells) using historical data, and therefore, enable
proactive load balancing for better user experience in the
future. For the third example, machine learning models (e.g.,
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TABLE I
UNCERTAINTY-AWARE OPTIMIZATIONS

Name Formulation Remarks

Original Optimization
min
x∈X

f(x, ξ)

s.t. g(x, ξ) ≤ 0

x: decision, X : domain, ξ: parameter,
f : cost function (mostly nonnegative),
g: constraint function (possibly multi-output).

Robust Optimization
min
x∈X

max
ξ∈Ξ

f(x, ξ)

s.t. max
ξ∈Ξ

g(x, ξ) ≤ 0

Ξ: uncertainty set of ξ.
Philosophy: minimize worst-case cost (i.e., avoid significant
performance degradation) & guarantee worst-case feasibility.

Stochastic Optimization
min
x∈X

Eξ∼Pξf(x, ξ)

s.t. Eξ∼Pξg(x, ξ) ≤ 0

E: expectation operator.
Philosophy: minimize expected cost & guarantee expected feasibility.

Sample-Average Approx. (SAA)
Using Samples {ξ1, ξ2, . . . , ξn} :

min
x∈X

1
n

∑n
i=1 f(x, ξi)

s.t. 1
n

∑n
i=1 g(x, ξi) ≤ 0.

Chance-Constrained
Optimization

min
x∈X

Eξ∼Pξf(x, ξ)

s.t. Prξ∼Pξ [g(x, ξ) ≤ 0] ≥ α

Prξ[·]: probability of argument event induced by random vector ξ.
Philosophy: require the probability of feasibility to be no less than
a pre-specified level α (e.g., 0.95).

Mean-Variance
Optimization

min
x∈X

Eξ∼Pξf(x, ξ) + λ1Dξ∼Pξf(x, ξ)

s.t. Eξ∼Pξg(x, ξ) + λ2Dξ∼Pξg(x, ξ) ≤ 0

D: variance operator, λ1, λ2: trade-off parameters.
Philosophy: minimize variances for smaller variability (i.e., higher
robustness).

Mean-VaR
Optimization

min
x∈X

Eξ∼Pξf(x, ξ) + λVaRα[f(x, ξ)]

s.t. considerations of g(x, ξ) under Pξ

Value-at-Risk (VaR): VaRα[h(η)] := inf
s: Prη∼Pη [h(η)≤s]≥α

s.

Philosophy: minimize VaR for smaller variability (higher robustness).
Considerations of g(x, ξ) under Pξ can be mean, variance, VaR,
probability (i.e., chance-constraint), etc.

Distributionally Robust
Optimization

min
x∈X

max
P∈U

Eξ∼Pf(x, ξ)

s.t. max
P∈U

Eξ∼Pg(x, ξ) ≤ 0

Philosophy: Pξ is not exactly known (e.g., SAA), but included in U .
U := {P : d(P, P̄) ≤ ϵ}: uncertainty set for Pξ, a ball centered at P̄.
P̄: a reference distribution, serving as an estimate of Pξ.

recurrent neural networks, long short-term memory networks)
can predict future channel conditions based on historical
channel state information, and therefore, empower proactive
resource allocation (e.g., adaptive modulation and coding,
beamforming) for smoother and robust quality of communica-
tions and sensing service in the time ahead.

B. UA Modeling and Computational Frameworks

When a wireless communication or sensing problem can be
formulated as an optimization, signal processing, or machine
learning model, existing analytical and computational frame-
works in these domains become particularly applicable. This
subsection discusses the efforts in this direction.

1) Uncertainty Quantification: Let ξ denote a quantity of
interest that takes values on real or complex coordinate spaces;
for example, locations of users, channel matrices, channel
noise powers, budgets of transmit power, and predicted future
loads of base stations or access points. From the perspective
of mathematical modeling and algorithmic computation, the
initial step of uncertainty awareness in ξ is to quantify uncer-
tainties. Most prevalent treatments in this regard include the
following: a) region analysis, e.g., specifying the practically
smallest region Ξ on which ξ takes its values; b) probability
method, e.g., modeling ξ as a random vector or matrix that
has distribution Pξ. Note that Ξ and Pξ can also be specific
to extra conditions such as time, space, and frequency; that
is, Ξ and Pξ can be time-, position-, and frequency-selective.
Other less-trending uncertainty-quantification approaches en-
compass fuzzy logic, Dempster–Shafer evidence theory, etc.
After quantifying uncertainties, handling methods such as
UA optimization, adaptive and robust signal processing, and
trustworthy machine learning are the next consideration.

2) UA Optimization: Numerous communications and sens-
ing problems can be formulated as an optimization model

[12]; see Original Optimization in Table I. For example, x can
be a symbol vector in signal detection, a direction-of-arrival
(DoA) vector in multi-target sensing, a beamformer vector in
beamforming, a power control vector in resource allocation, a
position vector in base-station and sensor deployment, and so
on; ξ can denote power budgets, array steering vectors, chan-
nel matrices, constellation points, and reflection coefficients of
relays or intelligent surfaces, among others.

Adaptive Optimization: When the value of ξ is not exactly
known, solving Original Optimization is not practically acces-
sible. In this case, a natural way is to estimate its real-time
value and solve the problem repeatedly whenever the value of
ξ is updated. The estimation of ξ can be based on collecting
more data, incorporating more expert knowledge, etc. In
wireless communications, a typical example is to refine the
channel state information frequently using new-coming pilots.
In wireless sensing, DoA tracking is a representative instance
to account for dynamic targets. In the practice of wireless
engineering, the primary challenge, however, is to obtain the
real-time information of ξ in a satisfactorily accurate manner.

Robust Optimization: When the real-time value of ξ is
difficult to be accurately estimated, another popular technical
treatment is to study Robust Counterpart [7], [8], [13]; see
Table I. To clarify, for all possible values of ξ, the cost
of decision x is no larger than maxξ∈Ξ f(x, ξ), and the
feasibility of x is always ensured. Note that f and g may
only depend on part of ξ; e.g., f(x, ξ1) and g(x, ξ2) where
ξ1 ∈ Ξ1, ξ2 ∈ Ξ2, and ξ := [ξ1; ξ2]. Note also that adaptivity
and robustness principles can be jointly used in practice [7]
because adaptive estimation can be inexact as well.

Stochastic Optimization: Stochastic optimization, instead of
considering only the domain Ξ, takes into account distribution
Pξ of ξ and studies expectations of random quantities f(x, ξ)
and g(x, ξ); see Table I. Chance-Constrained Optimization
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(CCO), in contrast, requires the probability of feasibility to
be no less than a pre-specified level 0 ≤ α ≤ 1 [3],
[6], [14]; see Table I. In wireless communications, studying
outage probability is a particularization of CCO; see, e.g.,
[3]. Since f and g may only depend on part of ξ, the
expectation operator E or the probability operator Pr can be
accordingly dropped if no uncertainty is present. In addition to
CCO, other variants of stochastic optimization include Mean-
Variance Optimization and Mean-VaR Optimization [14]; see
Table I. The value-at-risk (VaR) of a random quantity h(η),
induced by a deterministic function h and another random
quantity η, at confidence level α, is the lower α-quantile
of h(η). Minimizing VaR of f(x, ξ) implies reducing its
variability (i.e., increasing robustness) because cost function f
is nonnegative in most wireless design and operation problems;
cf. minimizing variance in mean-variance optimization. Yet
another variant of stochastic optimization takes into account
conditional VaR (CVaR) as a risk measure where CVaR is
the mean of tail values larger than VaR of h(η) [14]: i.e.,
CVaRα[h(η)] := E

{
h(η)

∣∣h(η) ≥ VaRα[h(η)]
}

. Minimizing
the CVaR of f(x, ξ) can also reduce its variability, which,
however, brings additional technical benefits than minimizing
VaR, for example, capturing tail risk. In real-world applica-
tions, if we only have access to n samples {ξ1, ξ2, . . . , ξn}
drawn from Pξ, rather than the full knowledge Pξ itself, the
stochastic-optimization counterpart can be estimated using the
sample-average approximation (SAA). Stochastic-optimization
variants based on other Pξ-involved quantities, such as chance-
constraint, variance, VaR, and CVaR, can be approximated
using samples similarly.

Distributionally Robust Optimization: In stochastic opti-
mization and its variants, we have assumed that the distribution
Pξ of ξ is exactly known. In practice, however, this assumption
can be highly untenable, and only a prior guess P̄ of Pξ is
available. For example, P̄ can be the empirical distribution
constructed using samples {ξ1, ξ2, . . . , ξn}. As a result, we
can consider an uncertainty set U for distribution Pξ and
formulate Distributionally Robust Counterpart [11], [14]; see
Table I. The uncertainty set U is usually constructed using
a distributional ball where d is a similarity measure between
two distributions P and P̄, and ϵ ≥ 0 is the radius. Intuitively,
although we do not exactly know Pξ, we assume that Pξ is
included in U ; the more trustable the prior P̄ is, that is, the
closer P̄ is to true distribution Pξ, the smaller the value of ϵ
should be. The distributionally robust counterpart for other
Pξ-involved quantities, such as chance-constraint, variance,
VaR, CVaR, etc., can be similarly obtained, for instance,
minP∈U Prξ∼P[g(x, ξ) ≤ 0] ≥ α.

Objective Deliberation: As illustrated by UA optimization
techniques, such as stochastic optimization and its variants,
as well as (distributionally) robust optimization, the key to
uncertainty awareness is to modify the objective and constraint
functions. To this end, uncertainty awareness can also be
pursued from the very beginning of an optimization task,
that is, to deliberate the design of objective and constraint
functions. For example, in regression analysis, we can replace
the mean-squared-error cost function with the Huber cost
function to achieve robustness against outliers [15]. In wireless

communications and sensing, the Huber cost is particularly
useful in outlier-aware signal processing and machine learning
for, e.g., wireless signal estimation.

3) Adaptive and Robust Signal Processing: Typical roles
of signal processing in wireless communications and sensing
include data compression (e.g., source coding and decoding,
rate-distortion analysis), modulation and demodulation, chan-
nel estimation and equalization, error detection and correction
(e.g., channel coding and decoding), spectrum analysis (e.g.,
in cognitive radio), transmit beamforming (e.g., for resource
allocation), receive beamforming and spatial filtering (e.g.,
for waveform, power, or DoA estimation), time synchroniza-
tion, frequency alignment, noise and interference suppression
(e.g., digital filtering), signal detection and estimation (e.g.,
in MIMO), waveform design, pattern recognition and target
detection, information fusion (e.g., in sensor network), user
behavior and station load forecasting, and target localization
and tracking, among many others. A signal-processing process
can be seen as a computational system or method with explicit
input and output. As such, general UA principles in systems
design can be used to improve the reliability, resilience, adap-
tivity, and robustness of a signal processing approach; specif-
ically, these principles include the following: a) redundancy,
diversity, and margin; b) feedback and adaptivity; c) anomaly
detection and handling; d) modularization; e) decentralization;
and f) prediction and prescription. When a signal process-
ing problem is cast into an optimization formulation, UA
optimization methods can also be considered; these methods
encompass a) adaptive optimization, b) robust optimization,
c) stochastic optimization and its variants, d) distributionally
robust optimization, and e) objective deliberation. For concrete
examples, see, e.g., [4], [7], [11], [15], [16].

4) Trustworthy Machine Learning: Typical roles of ma-
chine learning in wireless communications and sensing can
be largely covered by optimization and signal processing;
for example, resource allocation, dynamic network manage-
ment, beamforming, modulation, coding, signal detection and
estimation, user behavior and station load prediction, target
positioning and tracking, and channel estimation, compression,
and feedback. The main difference is that machine learning
heavily depends on historical observation data rather than
physical mechanism modeling [1]. The benefit of this data-
driven nature is to free scientists and engineers from frus-
trating modeling of a complex and dynamic physical process,
real-world phenomenon, or data-generating mechanism. The
drawback arises, nevertheless, when the data set is scarce
(e.g., due to the fast variability of wireless environments) and
the computational resources are limited (e.g., in IoT devices);
the less data and computational resources that we have, the
less trustable a machine learning method is. Trustworthiness
in machine learning for wireless communications and sensing
includes, but is beyond, reliability, resilience, adaptivity, and
robustness; cf. [2, Fig. 10]. In this sense, general UA principles
in systems design, optimization, and signal processing can be
resorted to for trustworthy machine learning, such as redun-
dancy, diversity, modularization, decentralization, prediction
and prescription, adaptivity, robustness, objective deliberation,
etc. Other trustworthiness considerations encompass explain-
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ability (e.g., transparency, fairness) and sustainability (e.g.,
power efficiency, ethics), which, however, require additional
technical elaborations and exceed the scope of this article.

Ad hoc technical treatments are also widely reported for
trustworthy machine learning to accommodate uncertain fac-
tors; see, e.g., [17]. Typical examples include the following.

• Data Engineering: to transform and augment data set.
Excellent examples encompass noise injection, synonym
replacement and paraphrasing of texts, rotating and flip-
ping of images, cropping and splitting of audios, artifact
interference in wireless engineering, etc.

• Hypothesis Engineering: to choose a suitable hypothesis
space to avoid overfitting. For example, for Gaussian-
distributed data, linear models are optimal and therefore
sufficient. The employment of highly-nonlinear neural
networks, on the contrary, tends to overfit the data. In this
sense, tailoring a suitable function space (e.g., a neutral
network architecture) for a specific problem is crucial.

• Algorithm Engineering: to opt for a suitable computa-
tional approach and control its execution. For example,
adaptive learning (e.g., few-shot, transfer, continual), ad-
versarial training, regularization, ensemble learning (e.g.,
bagging, boosting), dropout in neural network training,
and tricks in stochastic gradient descent (e.g., momentum,
gradient clipping, and early stopping) are typical choices.

The three techniques above, however, can also be incorporated
into signal processing methods, e.g., [18] for noise injection.

IV. PRICES OF UNCERTAINTY AWARENESS

The law of “no free lunch” is philosophically and tech-
nically applicable to the systems engineering of almost all
real-world designs, productions, and applications. Uncertainty
awareness in wireless communications and sensing is no ex-
ception. Addressing uncertainties such as noise, interference,
hardware imperfections, dynamic environments, data scarcity,
and computational errors often requires balancing conflicting
performance metrics. To be specific, optimizing for reliability,
resilience, adaptability, and robustness often comes at the
expense of other critical factors like computational complexity,
resource efficiency, or nominal optimality. For example, some
typical trade-offs can be highlighted as follows:

• Robustness vs Efficiency: Robust strategies that prior-
itize robustness to uncertainties, such as redundancy,
diversity, and margin through employing conservative
resource allocations, spectra spread, guard times, error-
correction mechanisms, etc., often sacrifice resource effi-
ciency because extra resources, which may remain idle,
are occupied.

• Robustness vs Complexity: By introducing overengineer-
ing techniques (e.g., redundancy and diversity) and com-
plicated optimization formulations (e.g., Table I), the
structural and computational complexities of the system,
model, or method are largely increased; see [13], [14].

• Robustness vs Optimality: Robustness against uncertain-
ties loses nominal optimality under ideal or near-ideal
conditions. To be specific, when significant uncertainties
do not actually occur in practice since they are random,

the optimality cannot be reached by a robust solution
because it pursues optimality under the worst case, not
under the nominal situation.

• Modularization vs Integration: To isolate faults and facil-
itate maintenance, we prefer the modularization scheme.
Yet, for the purposes of resource sharing and overall
optimality, e.g., in ISAC and ML-based ITP systems, we
may resort to integration.

• Centralization vs Decentralization: Centralized systems
enable efficient global optimality of resource use and
node interaction, but are prone to central-node failure
and network attacks. Decentralized systems enhance ro-
bustness and scalability by distributing data storage and
computation, but may face node-coordination challenges
and suboptimal global performance.

V. EXAMPLES OF UNCERTAINTY HANDLING

In Subsection III-A, concrete examples of UA designs of
signals and systems are provided. This section presents addi-
tional examples that leverage UA modeling and computational
frameworks in Subsection III-B.

Fast Adaptations for Wireless Communications: In wireless
communications, channel conditions vary over time due to
environmental fluctuations and user mobility. Consequently,
the entire wireless transmission process must adapt to real-
time channel conditions, including channel estimation, trans-
mit precoding, receive combining, and resource allocation,
among others [4], [5]. Two immediate challenges arise: first,
acquiring sufficient new pilot data to estimate updated chan-
nel state information; second, ensuring adequate computing
power for adaptive operations. However, in practice, both
pilot data and computing resources are limited, especially
for highly dynamic channels and resource-constrained edge
devices. Hence, computationally-lightweight and data-efficient
methods in wireless transmission must be developed to handle
channel evolution. In signal processing for wireless commu-
nications, typical examples include adaptive modulation and
coding, adaptive beamforming, and adaptive receivers, among
others [4]. In machine learning for wireless communications,
few-shot learning has emerged as a promising approach. By
leveraging meta-learning techniques, multi-task learning, and
domain knowledge, few-shot learning enables computation-
and data-efficient wireless solutions such as channel estima-
tion, precoding, and signal detection [5].

Robust Adaptive Beamforming: Adaptive beamforming
plays a key role in wireless communications and sensing
to enhance signal-to-interference-plus-noise ratios (SINRs);
Capon beamforming is a typical approach in this domain,
which is formulated as minw wHR̂w, s.t. âHw = 1, where R̂
denotes the estimated covariance matrix of array snapshots, w
a beamformer, and â the assumed steering vector of the signal
of interest [7]. In practice, R̂ and â can be inaccurate. As such,
robust Capon beamforming is formulated as

min
w

max
R∈UR

wHRw

min
a∈Ua

wHaaHw ≥ 1,
(1)
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to optimize the worst-case performance and ensure worst-
case feasibility [7], where UR and Ua are the uncertainty sets
(i.e., uncertainty quantifications) of R and a, respectively;
for example, UR := {R : ∥R − R̂∥F ≤ ϵ1} and Ua :=
{a : ∥a − â∥2 ≤ ϵ2} for some uncertainty levels ϵ1, ϵ2 ≥ 0
where ∥·∥F and ∥·∥2 denote the matrix Frobenius norm and the
vector 2-norm, respectively. A chance-constraint alternative
is proposed in [6], where Pra∼Pa [w

HaaHw ≥ 1] ≥ α is
employed with an uncertainty-quantification distribution Pa

and a pre-specified level α. It is reported that such UA formu-
lations can greatly enhance beamforming performance when
uncertainties are present in the estimated snapshot covariance
R̂ and assumed steering vector â [6], [7]. However, this
benefit comes with extra prices, such as computational burden,
because solving (1) requires additional efforts [7]. To sum
up, through this example, the concepts of uncertainty quantifi-
cation, robust optimization, chance-constrained optimization,
and robustness-complexity trade-off have been illustrated.

Distributionally Robust Localization: Wireless localization
is a fundamental technique in IoT and WSNs. A wireless local-
ization problem can be formulated as minr Er0∼P̂r0

[g(r, r0)],
where r is an estimated location of a target, r0 is the actual
but unknown location of this target, g is a cost function such
as the mean-squared error, and P̂r0 is an assumed uncertainty-
quantification distribution of r0 [11]. In practice, the assumed
distribution P̂r0

can be inaccurate. As such, the distributionally
robust localization problem can be formulated as

min
r

max
Pr0∈U

Er0∼Pr0
[g(r, r0)], (2)

where U := {Pr0 : d(Pr0 , P̂r0) ≤ ϵ} is the uncertainty set
(i.e., uncertainty quantification) of Pr0 , d is a metric between
distributions, and ϵ ≥ 0 is the uncertainty level. It is reported
that such a UA formulation can significantly reduce localiza-
tion errors when distributional uncertainties are present in the
assumed distribution P̂r0

[11]. However, if the assumed P̂r0
is

accurate, solving (2) may sacrifice the performance optimality
because the solution to the robust counterpart (2) does not
necessarily solve the original problem minr Er0∼P̂r0

[g(r, r0)],
leading to a conflict between robustness and optimality [11,
Fig. 5]. In summary, through this example, the concepts of
uncertainty quantification, distributionally robust optimization,
and robustness-optimality trade-off have been illustrated.

In real-world systems such as IoT, WSNs, MANETs, and
VANETs, the demonstrated uncertainties and countermeasures
are applicable because signal detection, precoding and beam-
forming, and localization are key enabling techniques.

VI. CONCLUSIONS

This article focuses on uncertainty awareness in wireless
communications and sensing. First, the sources and com-
plications of uncertainties are identified, for example, the
reliability, resilience, adaptivity, and robustness issues result-
ing from channel uncertainties, interferences, cyberattacks,
hardware imperfections, dynamic environments, data scarcity,
and computational errors. Second, existing and developing UA
technical treatments are highlighted, including UA designs of
signals and systems (i.e., redundancy, diversity, and margin,

feedback and adaptivity, anomaly detection and handling,
modularization, decentralization, and prediction and prescrip-
tion), as well as UA modeling and computational frameworks
(i.e., uncertainty quantification, UA optimization, adaptive and
robust signal processing, and trustworthy machine learning).
Third, trade-offs that balance conflicting performance metrics
in using UA strategies are exemplified, encompassing robust-
ness vs efficiency, robustness vs complexity, robustness vs
optimality, modularization vs integration, and centralization vs
decentralization, among others. Fourth, motivating examples
of how to apply these UA strategies are provided. Through
the above efforts, we deliver the following message to the
community: uncertainty awareness is an enabling and pivotal
aspect of intelligent transmission and processing.
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